Copied to
clipboard

G = (C22×C20)⋊C4order 320 = 26·5

2nd semidirect product of C22×C20 and C4 acting faithfully

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: (C2×C20).4D4, (C22×C20)⋊2C4, (C2×D4).8D10, C22⋊C42Dic5, (C22×C4)⋊2Dic5, C20.D4.2C2, (D4×C10).6C22, (C22×C10).15D4, C55(C23.D4), C23.6(C5⋊D4), C23⋊Dic5.2C2, C23.2(C2×Dic5), C10.43(C23⋊C4), C2.7(C23⋊Dic5), C22.D4.1D5, C22.13(C23.D5), (C5×C22⋊C4)⋊8C4, (C2×C4).6(C5⋊D4), (C22×C10).39(C2×C4), (C5×C22.D4).1C2, (C2×C10).161(C22⋊C4), SmallGroup(320,97)

Series: Derived Chief Lower central Upper central

C1C22×C10 — (C22×C20)⋊C4
C1C5C10C2×C10C22×C10D4×C10C23⋊Dic5 — (C22×C20)⋊C4
C5C10C2×C10C22×C10 — (C22×C20)⋊C4
C1C2C22C2×D4C22.D4

Generators and relations for (C22×C20)⋊C4
 G = < a,b,c,d | a2=b2=c20=d4=1, ab=ba, ac=ca, dad-1=abc10, bc=cb, dbd-1=bc10, dcd-1=abc-1 >

Subgroups: 254 in 68 conjugacy classes, 23 normal (all characteristic)
C1, C2, C2, C4, C22, C22, C5, C8, C2×C4, C2×C4, D4, C23, C10, C10, C22⋊C4, C22⋊C4, C4⋊C4, M4(2), C22×C4, C2×D4, Dic5, C20, C2×C10, C2×C10, C23⋊C4, C4.D4, C22.D4, C52C8, C2×Dic5, C2×C20, C2×C20, C5×D4, C22×C10, C23.D4, C4.Dic5, C23.D5, C5×C22⋊C4, C5×C22⋊C4, C5×C4⋊C4, C22×C20, D4×C10, C20.D4, C23⋊Dic5, C5×C22.D4, (C22×C20)⋊C4
Quotients: C1, C2, C4, C22, C2×C4, D4, D5, C22⋊C4, Dic5, D10, C23⋊C4, C2×Dic5, C5⋊D4, C23.D4, C23.D5, C23⋊Dic5, (C22×C20)⋊C4

Smallest permutation representation of (C22×C20)⋊C4
On 80 points
Generators in S80
(1 78)(2 79)(3 80)(4 61)(5 62)(6 63)(7 64)(8 65)(9 66)(10 67)(11 68)(12 69)(13 70)(14 71)(15 72)(16 73)(17 74)(18 75)(19 76)(20 77)(21 54)(22 55)(23 56)(24 57)(25 58)(26 59)(27 60)(28 41)(29 42)(30 43)(31 44)(32 45)(33 46)(34 47)(35 48)(36 49)(37 50)(38 51)(39 52)(40 53)
(1 40)(2 21)(3 22)(4 23)(5 24)(6 25)(7 26)(8 27)(9 28)(10 29)(11 30)(12 31)(13 32)(14 33)(15 34)(16 35)(17 36)(18 37)(19 38)(20 39)(41 66)(42 67)(43 68)(44 69)(45 70)(46 71)(47 72)(48 73)(49 74)(50 75)(51 76)(52 77)(53 78)(54 79)(55 80)(56 61)(57 62)(58 63)(59 64)(60 65)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)
(2 67 21 52)(3 19)(4 65 23 50)(5 17)(6 63 25 48)(7 15)(8 61 27 46)(9 13)(10 79 29 44)(12 77 31 42)(14 75 33 60)(16 73 35 58)(18 71 37 56)(20 69 39 54)(22 28)(24 26)(30 40)(32 38)(34 36)(41 80 51 70)(43 78 53 68)(45 76 55 66)(47 74 57 64)(49 72 59 62)

G:=sub<Sym(80)| (1,78)(2,79)(3,80)(4,61)(5,62)(6,63)(7,64)(8,65)(9,66)(10,67)(11,68)(12,69)(13,70)(14,71)(15,72)(16,73)(17,74)(18,75)(19,76)(20,77)(21,54)(22,55)(23,56)(24,57)(25,58)(26,59)(27,60)(28,41)(29,42)(30,43)(31,44)(32,45)(33,46)(34,47)(35,48)(36,49)(37,50)(38,51)(39,52)(40,53), (1,40)(2,21)(3,22)(4,23)(5,24)(6,25)(7,26)(8,27)(9,28)(10,29)(11,30)(12,31)(13,32)(14,33)(15,34)(16,35)(17,36)(18,37)(19,38)(20,39)(41,66)(42,67)(43,68)(44,69)(45,70)(46,71)(47,72)(48,73)(49,74)(50,75)(51,76)(52,77)(53,78)(54,79)(55,80)(56,61)(57,62)(58,63)(59,64)(60,65), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (2,67,21,52)(3,19)(4,65,23,50)(5,17)(6,63,25,48)(7,15)(8,61,27,46)(9,13)(10,79,29,44)(12,77,31,42)(14,75,33,60)(16,73,35,58)(18,71,37,56)(20,69,39,54)(22,28)(24,26)(30,40)(32,38)(34,36)(41,80,51,70)(43,78,53,68)(45,76,55,66)(47,74,57,64)(49,72,59,62)>;

G:=Group( (1,78)(2,79)(3,80)(4,61)(5,62)(6,63)(7,64)(8,65)(9,66)(10,67)(11,68)(12,69)(13,70)(14,71)(15,72)(16,73)(17,74)(18,75)(19,76)(20,77)(21,54)(22,55)(23,56)(24,57)(25,58)(26,59)(27,60)(28,41)(29,42)(30,43)(31,44)(32,45)(33,46)(34,47)(35,48)(36,49)(37,50)(38,51)(39,52)(40,53), (1,40)(2,21)(3,22)(4,23)(5,24)(6,25)(7,26)(8,27)(9,28)(10,29)(11,30)(12,31)(13,32)(14,33)(15,34)(16,35)(17,36)(18,37)(19,38)(20,39)(41,66)(42,67)(43,68)(44,69)(45,70)(46,71)(47,72)(48,73)(49,74)(50,75)(51,76)(52,77)(53,78)(54,79)(55,80)(56,61)(57,62)(58,63)(59,64)(60,65), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80), (2,67,21,52)(3,19)(4,65,23,50)(5,17)(6,63,25,48)(7,15)(8,61,27,46)(9,13)(10,79,29,44)(12,77,31,42)(14,75,33,60)(16,73,35,58)(18,71,37,56)(20,69,39,54)(22,28)(24,26)(30,40)(32,38)(34,36)(41,80,51,70)(43,78,53,68)(45,76,55,66)(47,74,57,64)(49,72,59,62) );

G=PermutationGroup([[(1,78),(2,79),(3,80),(4,61),(5,62),(6,63),(7,64),(8,65),(9,66),(10,67),(11,68),(12,69),(13,70),(14,71),(15,72),(16,73),(17,74),(18,75),(19,76),(20,77),(21,54),(22,55),(23,56),(24,57),(25,58),(26,59),(27,60),(28,41),(29,42),(30,43),(31,44),(32,45),(33,46),(34,47),(35,48),(36,49),(37,50),(38,51),(39,52),(40,53)], [(1,40),(2,21),(3,22),(4,23),(5,24),(6,25),(7,26),(8,27),(9,28),(10,29),(11,30),(12,31),(13,32),(14,33),(15,34),(16,35),(17,36),(18,37),(19,38),(20,39),(41,66),(42,67),(43,68),(44,69),(45,70),(46,71),(47,72),(48,73),(49,74),(50,75),(51,76),(52,77),(53,78),(54,79),(55,80),(56,61),(57,62),(58,63),(59,64),(60,65)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)], [(2,67,21,52),(3,19),(4,65,23,50),(5,17),(6,63,25,48),(7,15),(8,61,27,46),(9,13),(10,79,29,44),(12,77,31,42),(14,75,33,60),(16,73,35,58),(18,71,37,56),(20,69,39,54),(22,28),(24,26),(30,40),(32,38),(34,36),(41,80,51,70),(43,78,53,68),(45,76,55,66),(47,74,57,64),(49,72,59,62)]])

41 conjugacy classes

class 1 2A2B2C2D4A4B4C4D4E4F5A5B8A8B10A···10F10G10H10I10J10K10L20A···20H20I···20N
order12222444444558810···1010101010101020···2020···20
size11244444840402240402···24444884···48···8

41 irreducible representations

dim111111222222224444
type+++++++--++
imageC1C2C2C2C4C4D4D4D5Dic5Dic5D10C5⋊D4C5⋊D4C23⋊C4C23.D4C23⋊Dic5(C22×C20)⋊C4
kernel(C22×C20)⋊C4C20.D4C23⋊Dic5C5×C22.D4C5×C22⋊C4C22×C20C2×C20C22×C10C22.D4C22⋊C4C22×C4C2×D4C2×C4C23C10C5C2C1
# reps111122112222441248

Matrix representation of (C22×C20)⋊C4 in GL4(𝔽41) generated by

0010
0001
1000
0100
,
174000
12400
001740
00124
,
2313731
40161025
3731231
10254016
,
1000
344000
00241
003817
G:=sub<GL(4,GF(41))| [0,0,1,0,0,0,0,1,1,0,0,0,0,1,0,0],[17,1,0,0,40,24,0,0,0,0,17,1,0,0,40,24],[23,40,37,10,1,16,31,25,37,10,23,40,31,25,1,16],[1,34,0,0,0,40,0,0,0,0,24,38,0,0,1,17] >;

(C22×C20)⋊C4 in GAP, Magma, Sage, TeX

(C_2^2\times C_{20})\rtimes C_4
% in TeX

G:=Group("(C2^2xC20):C4");
// GroupNames label

G:=SmallGroup(320,97);
// by ID

G=gap.SmallGroup(320,97);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,28,141,232,219,675,297,1684,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^2=c^20=d^4=1,a*b=b*a,a*c=c*a,d*a*d^-1=a*b*c^10,b*c=c*b,d*b*d^-1=b*c^10,d*c*d^-1=a*b*c^-1>;
// generators/relations

׿
×
𝔽